If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7b2 + 6b + 2 = 0 Reorder the terms: 2 + 6b + 7b2 = 0 Solving 2 + 6b + 7b2 = 0 Solving for variable 'b'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 0.2857142857 + 0.8571428571b + b2 = 0 Move the constant term to the right: Add '-0.2857142857' to each side of the equation. 0.2857142857 + 0.8571428571b + -0.2857142857 + b2 = 0 + -0.2857142857 Reorder the terms: 0.2857142857 + -0.2857142857 + 0.8571428571b + b2 = 0 + -0.2857142857 Combine like terms: 0.2857142857 + -0.2857142857 = 0.0000000000 0.0000000000 + 0.8571428571b + b2 = 0 + -0.2857142857 0.8571428571b + b2 = 0 + -0.2857142857 Combine like terms: 0 + -0.2857142857 = -0.2857142857 0.8571428571b + b2 = -0.2857142857 The b term is 0.8571428571b. Take half its coefficient (0.4285714286). Square it (0.1836734694) and add it to both sides. Add '0.1836734694' to each side of the equation. 0.8571428571b + 0.1836734694 + b2 = -0.2857142857 + 0.1836734694 Reorder the terms: 0.1836734694 + 0.8571428571b + b2 = -0.2857142857 + 0.1836734694 Combine like terms: -0.2857142857 + 0.1836734694 = -0.1020408163 0.1836734694 + 0.8571428571b + b2 = -0.1020408163 Factor a perfect square on the left side: (b + 0.4285714286)(b + 0.4285714286) = -0.1020408163 Can't calculate square root of the right side. The solution to this equation could not be determined.
| (16-x)+(8x-10)+(3x+12)=180 | | 7z-z=-3+3z-2-1 | | 4x+2(x+4)= | | 2x+5(25-20)=7.7+10 | | 6.2x+2.56=-11.08 | | y=bx+d | | -x/4-6 | | x+(x+2)=15 | | 4(x-5.9)=3.6 | | -21x^2-20x-25=0 | | 10y^2+23y-5=0 | | a(a+b)-2a(a-b)= | | -4x-2y+36=0 | | 3x+2=x+34 | | 3/4(5x+7)=3(2-3x)+12 | | 0.0000812= | | -0.08x-0.01y+11=0 | | 8y-3=11y-1/2 | | x+34=55 | | 6x-11=13x-24 | | 16x+1=5(3x-1)+6 | | 3(a-2)-4(a+1)= | | x-31=2 | | -28-4= | | x-7=27 | | -1/4(x-8)+1/5(x+2)=x+9 | | 5x-2(x+1)=11 | | x-21=31 | | 4x+7=5x-3 | | X=-14+2y | | -12a+8a-2a+3a-5a= | | 5x-10=4(x+8)+6 |